

Welcome to GED4PY’s documentation!

Contents:

	GEDCOM parser for Python
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage

	ged4py API
	ged4py

	Technical information
	Character encoding

	Name representation

	Examples
	Example 1

	Example 2

	Example 3

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.4.4 (2021-05-01)

	0.4.3 (2021-04-30)

	0.4.2 (2021-04-09)

	0.4.1 (2021-04-08)

	0.4.0 (2020-10-09)

	0.3.2 (2020-10-04)

	0.3.1 (2020-09-28)

	0.3.0 (2020-09-28)

	0.2.4 (2020-08-30)

	0.2.3 (2020-08-29)

	0.2.2 (2020-08-16)

	0.2.1 (2020-08-15)

	0.2.0 (2020-07-05)

	0.1.13 (2020-04-15)

	0.1.12 (2020-03-01)

	0.1.11 (2019-01-06)

	0.1.10 (2018-10-17)

	0.1.9 (2018-05-17)

	0.1.8 (2018-05-16)

	0.1.7 (2018-04-23)

	0.1.6 (2018-04-02)

	0.1.5 (2018-03-25)

	0.1.4 (2018-01-31)

	0.1.3 (2018-01-16)

	0.1.2 (2017-11-26)

	0.1.1 (2017-11-20)

	0.1.0 (2017-07-17)

Indices and tables

	Index

	Module Index

	Search Page

GEDCOM parser for Python

[image: _images/ged4py.svg]
 [https://pypi.python.org/pypi/ged4py][image: _images/ged4py1.svg]
 [https://travis-ci.org/andy-z/ged4py][image: Documentation Status]
 [https://ged4py.readthedocs.io/en/latest/?badge=latest]Implementation of the GEDCOM parser in Python

	Free software: MIT license

	Documentation: https://ged4py.readthedocs.io.

Features

	Parsing of GEDCOM files as defined by 5.5.1 version of GEDCOM standard

	Supported file encodings are UTF-8 (with or without BOM), ASCII or ANSEL

	Designed to parse large files efficiently

	Supports Python 3.6+

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install GEDCOM parser for Python, run this command in your terminal:

$ pip install ged4py

This is the preferred method to install GEDCOM parser for Python, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for GEDCOM parser for Python can be downloaded from the Github repo [https://github.com/andy-z/ged4py].

You can either clone the public repository:

$ git clone git://github.com/andy-z/ged4py

Or download the tarball [https://github.com/andy-z/ged4py/tarball/master]:

$ curl -OL https://github.com/andy-z/ged4py/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

Currently ged4py supports parsing of existing GEDCOM files, there
is no support for (re-)generating GEDCOM data. The main interface for parsing
is ged4py.parser.GedcomReader class. To create parser instance
one has to pass file with GEDCOM data as a single required parameter, this
can be either file name of a Python file object. If file object is passed
then the file has to be open in a binary mode and it has to support
seek() and tell() methods. Example of instantiating a parser:

from ged4py import GedcomReader

path = "/path/to/file.gedcom"
with GedcomReader(path) as parser:
 # GedcomReader provides context support
 ...

or using in-memory buffer as a file (could be useful for testing):

import io
from ged4py import GedcomReader

data = b"..." # make some binary date here
with io.BytesIO(data) as file:
 parser = GedcomReader(file)
 ...

In most cases parser should be able to determine input file encoding from the
file if data in the file follows GEDCOM specification. In other cases parser
may need external help, if you know file encoding you can provide it as an
argument to parser:

parser = GedcomReader(path, encoding="utf-8")

Any encoding supported by Python codecs module can be used as
an argument. In addition, this package registers two additional encodings
from the ansel [https://pypi.org/project/ansel/] package:

	ansel

	American National Standard for Extended Latin Alphabet Coded Character
Set for Bibliographic Use (ANSEL)

	gedcom

	GEDCOM extensions for ANSEL

By default parser raises exception if it encounters errors while decoding
data in a file. To override this behavior one can specify different error
policy, following the same pattern as standard codecs.decode()
method, e.g.:

parser = GedcomReader(path, encoding="utf-8", errors='replace')

Main mode of operation for parser is iterating over records in a file in
sequential manner. GEDCOM records are organized in hierarchical structures,
and ged4py parser facilitates access to these hierarchies by grouping
records in tree-like structures. Instead of providing iterator over every
record in a file parser iterates over top-level (level 0) records, and
for each level-0 record it returns record structure which includes nested
records below level 0.

The main method of the parser is the method
records0() which returns iterator over all
level-0 records. Method takes an optional argument for a tag name, without
argument all level-0 records are returned by iterator (starting with “HEAD”
and ending with “TRLR”). If tag is given then only the records with
matching tag are returned:

with GedcomReader(path) as parser:
 # iterate over all INDI records
 for record in parser.records0("INDI"):

Records returned by iterator are instances of class
ged4py.model.Record or one of its few sub-classes. Each record
instance has a small set of attributes:

	level - record level, 0 for top-level records

	xref_id - record reference ID, may be None

	tag - record tag name

	value - record value, can be None, string, or value of some other
type depending on record type

	sub_records - list of subordinate records, direct sub-records of this
record, it is easier to access items in this list using methods described
below.

If, for example, GEDCOM file contains sequence of records like this:

0 @ID12345@ INDI
1 NAME John /Smith/
1 BIRT
2 DATE 1 JAN 1901
2 PLAC Some place
1 FAMC @ID45623@
1 FAMS @ID7612@

then the record object returned from iterator will have these attributes:

	level is 0 (true for all records returned by
records0()),

	xref_id - “@ID12345@”,

	tag - “INDI”,

	value - None,

	sub_records - list of Record instances
corresponding to “NAME”, “BIRT”, “FAMC”, and “FAMS” tags (but not “DATE” or
“PLAC”, records for these tags will be in sub_records of “BIRT” record).

Record class has few convenience methods:

	sub_tags() - return all direct subordinate
records with a given tag name, list of records is returned, possibly empty.

	sub_tag() - return subordinate record with a
given tag name (or tag “path”), if there is more than one record with
matching tag then first one is returned, without match None is returned.

	sub_tag_value() - return value of subordinate
record with a given tag name (or tag “path”), or None if record is not
found or its value is None.

With the example records from above one can do record.sub_tag("BIRT/DATE")
on level-0 record to retrieve a Record instance
corresponding to level-2 “DATE” record, or alternatively use
record.sub_tag_value("BIRT/DATE") to retrieve the value attribute of
the same record.

There are few specialized sub-classes of Record
each corresponding to specific record tag:

	NAME records generate ged4py.model.NameRec instances, this
class knows how to split name representation into name components (first,
last, maiden) and has attributes for accessing those.

	DATE records generate ged4py.model.Date instances, the
value attribute of this class is converted into
ged4py.date.DateValue instance.

	INDI records are represented by ged4py.model.Individual class.

	“pointer” records whose value has special GEDCOM <POINTER> syntax
(@xref_id@) are represented by ged4py.model.Pointer
class. This class has special property ref which returns referenced
record. Methods sub_tag() and
sub_tag_value() have keyword argument
follow which can be set to True to allow automatic dereferencing
of the pointer records.

ged4py API

	ged4py

	Top-level package for GEDCOM parser for Python.

ged4py

Top-level package for GEDCOM parser for Python.

Most of the code in the s package is located in individual modules:

	ged4py.parser - defines GedcomReader
class which is the main entry point for the whole package;

	ged4py.model - collection of classes constituting ged4py data
model;

	ged4py.calendar - classes for working with calendar dates;

	ged4py.date - parsing and handling of GEDCOM dates;

	ged4py.detail - few modules for implementation details.

GedcomReader class can be imported directly from
top-level package as:

from ged4py import GedcomReader

Modules

	ged4py.calendar

	Module for parsing and representing calendar dates in gedcom format.

	ged4py.date

	Module for parsing and representing dates in gedcom format.

	ged4py.detail

	

	ged4py.model

	Module containing Python in-memory model for GEDCOM data.

	ged4py.parser

	Module containing methods for parsing GEDCOM files.

ged4py.calendar

Module for parsing and representing calendar dates in gedcom format.

Classes

	CalendarDate(year[, month, day, bc, original])

	Interface for calendar date representation.

	CalendarDateVisitor()

	Interface for implementation of Visitor pattern for CalendarDate classes.

	CalendarType(value)

	Namespace for constants defining names of calendars.

	FrenchDate(year[, month, day, bc, original])

	Implementation of CalendarDate for French Republican calendar.

	GregorianDate(year[, month, day, bc, …])

	Implementation of CalendarDate for Gregorian calendar.

	HebrewDate(year[, month, day, bc, original])

	Implementation of CalendarDate for Hebrew calendar.

	JulianDate(year[, month, day, bc, original])

	Implementation of CalendarDate for Julian calendar.

	
class ged4py.calendar.CalendarType(value)

	Bases: enum.Enum

Namespace for constants defining names of calendars.

Note that it does not define constants for ROMAN calendar which is
declared in GEDCOM standard as a placeholder for future definition, or
UNKNOWN calendar which is not supported by this library.

The constants defined in this namespace are used for the values of the
CalendarDate.calendar attribute. Each separate class implementing
CalendarDate interface uses distinct value for that attribute,
and this value can be used to deduce actual type of the
CalendarDate instance.

	
GREGORIAN = 'GREGORIAN'

	This is the value assigned to GregorianDate.calendar attribute.

	
JULIAN = 'JULIAN'

	This is the value assigned to JulianDate.calendar attribute.

	
HEBREW = 'HEBREW'

	This is the value assigned to HebrewDate.calendar attribute.

	
FRENCH_R = 'FRENCH R'

	This is the value assigned to FrenchDate.calendar attribute.

	
class ged4py.calendar.CalendarDate(year, month=None, day=None, bc=False, original=None)

	Bases: object

Interface for calendar date representation.

	Parameters

	
	yearint
	Calendar year number. If bc parameter is True then this year
is before “epoch” of that calendar.

	monthstr
	Name of the month. Optional, but if day is given then month cannot be
None.

	dayint
	Day in a month, optional.

	bcbool
	True if year has “B.C.”

	originalstr
	Original string representation of this date as it was specified in
GEDCOM file, could be None.

Notes

This class defines attributes and methods that are common for all
calendars defined in GEDCOM (though the meaning and representation can be
different in different calendars). In GEDCOM date consists of year, month,
and day; day and month are optional (either day or day+month), year must
be present. Day is a number, month is month name in a given calendar.
Year is a number optionally followed by B.C. or /NUMBER (latter
is defined for Gregorian calendar only).

Implementation for different calendars are provided by subclasses which
can implement additional attributes or methods. All subclasses need to
implement key() method to support ordering of the dates from
different calendars. There are presently four implementations defined
in this module:

	GregorianDate for “GREGORIAN” calendar

	JulianDate for “JULIAN” calendar

	HebrewDate for “HEBREW” calendar

	FrenchDate for “FRENCH R” calendar

To implement type-specific code on client side one can use one of these
approaches:

	dispatch based on the value of calendar attribute, it has
one of the values defined in CalendarType enum,
the value maps uniquely to an implementation class;

	dispatch based on the type of the instance using isinstance
method to check the type (e.g. isinstance(date, GregorianDate));

	double dispatch (visitor pattern) by implementing
CalendarDateVisitor interface.

	Attributes

	
	calendar
	Calendar used for this date, one of the CalendarType enums

	year_str
	Calendar year in string representation, this can include dual year and/or B.C.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	months()

	Ordered list of month names (in GEDCOM format) defined in calendar.

	parse(datestr)

	Parse <DATE> string and make CalendarDate from it.

	
year

	Calendar year number (int)

	
month

	Month name or None (str)

	
day

	Day number or None (int)

	
bc

	Flag which is True if year has a “B.C” suffix (bool).

	
original

	Original string representation of this date as it was specified in
GEDCOM file, could be None (str).

	
month_num

	Integer month number (1-based) or None if month name is not
given or unknown (int).

	
abstract classmethod months()

	Ordered list of month names (in GEDCOM format) defined in calendar.

	
abstract key()

	Return ordering key for this instance.

Returned key is a tuple with two numbers (jd, flag). jd is the
Julian Day number as floating point, flag is an integer flag.
If month or day is not known then last month or last day should be
returned in its place (in corresponding calendar, and converted to
JD) and flag should be set to 1. If date and month are known then
flag should be set to 0.

	
property year_str

	Calendar year in string representation, this can include dual year
and/or B.C. suffix (str)

	
abstract property calendar

	Calendar used for this date, one of the CalendarType enums
(CalendarType)

	
abstract accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorCalendarDateVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
classmethod parse(datestr)

	Parse <DATE> string and make CalendarDate from it.

	Parameters

	
	datestrstr
	String with GEDCOM date.

	Returns

	
	dateCalendarDate
	Date instance.

	Raises

	
	ValueError
	Raised if parsing fails.

	
class ged4py.calendar.FrenchDate(year, month=None, day=None, bc=False, original=None)

	Bases: ged4py.calendar.CalendarDate

Implementation of CalendarDate for French Republican calendar.

All parameters have the same meaning as in CalendarDate class.

	Attributes

	
	calendar
	Calendar used for this date, one of the CalendarType enums

	year_str
	Calendar year in string representation, this can include dual year and/or B.C.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	months()

	Ordered list of month names (in GEDCOM format) defined in calendar.

	parse(datestr)

	Parse <DATE> string and make CalendarDate from it.

	
classmethod months()

	Ordered list of month names (in GEDCOM format) defined in calendar.

	
key()

	Return ordering key for this instance.

	
property calendar

	Calendar used for this date, one of the CalendarType enums
(CalendarType)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorCalendarDateVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.calendar.GregorianDate(year, month=None, day=None, bc=False, original=None, dual_year=None)

	Bases: ged4py.calendar.CalendarDate

Implementation of CalendarDate for Gregorian calendar.

Parameter dual_year (and corresponding attribute) is used for dual
year. Other parameters have the same meaning as in CalendarDate
class.

	Parameters

	
	dual_yearint, optional
	Dual year number or None. Actual year should be given, not just
two last digits.

Notes

In GEDCOM Gregorian calendar dates are allowed to specify year in the
form YEAR1/YEAR2 (a.k.a.) dual-dating. Second number is used to specify
year as if calendar year starts in January, while the first number is
used for actual calendar year which starts at different date. Note that
GEDCOM specifies that dual year uses just two last digits in the dual
year number, though some implementations use 4 digits. This class expects
actual year number (e.g. as if it was specified as “1699/1700”).

	Attributes

	
	calendar
	Calendar used for this date, one of the CalendarType enums

	year_str
	Calendar year in string representation, this can include dual year and/or B.C.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	months()

	Ordered list of month names (in GEDCOM format) defined in calendar.

	parse(datestr)

	Parse <DATE> string and make CalendarDate from it.

	
dual_year

	If not None then this number represent year in a calendar with
year starting on January 1st (int).

	
classmethod months()

	Ordered list of month names (in GEDCOM format) defined in calendar.

	
property calendar

	Calendar used for this date, one of the CalendarType enums
(CalendarType)

	
key()

	Return ordering key for this instance.

	
property year_str

	Calendar year in string representation, this can include dual year
and/or B.C. suffix (str)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorCalendarDateVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.calendar.HebrewDate(year, month=None, day=None, bc=False, original=None)

	Bases: ged4py.calendar.CalendarDate

Implementation of CalendarDate for Hebrew calendar.

All parameters have the same meaning as in CalendarDate class.

	Attributes

	
	calendar
	Calendar used for this date, one of the CalendarType enums

	year_str
	Calendar year in string representation, this can include dual year and/or B.C.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	months()

	Ordered list of month names (in GEDCOM format) defined in calendar.

	parse(datestr)

	Parse <DATE> string and make CalendarDate from it.

	
classmethod months()

	Ordered list of month names (in GEDCOM format) defined in calendar.

	
key()

	Return ordering key for this instance.

	
property calendar

	Calendar used for this date, one of the CalendarType enums
(CalendarType)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorCalendarDateVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.calendar.JulianDate(year, month=None, day=None, bc=False, original=None)

	Bases: ged4py.calendar.CalendarDate

Implementation of CalendarDate for Julian calendar.

All parameters have the same meaning as in CalendarDate class.

	Attributes

	
	calendar
	Calendar used for this date, one of the CalendarType enums

	year_str
	Calendar year in string representation, this can include dual year and/or B.C.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	months()

	Ordered list of month names (in GEDCOM format) defined in calendar.

	parse(datestr)

	Parse <DATE> string and make CalendarDate from it.

	
classmethod months()

	Ordered list of month names (in GEDCOM format) defined in calendar.

	
key()

	Return ordering key for this instance.

	
property calendar

	Calendar used for this date, one of the CalendarType enums
(CalendarType)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorCalendarDateVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.calendar.CalendarDateVisitor

	Bases: object

Interface for implementation of Visitor pattern for
CalendarDate classes.

One can easily extend behavior of the CalendarDate class
hierarchy without modifying classes themselves. Clients need to implement
new behavior by sub-classing CalendarDateVisitor and calling
CalendarDate.accept() method, e.g.:

class FormatterVisitor(CalendarDateVisitor):

 def visitGregorian(self, date):
 return "Gregorian date:" + str(date)

 # and so on for each date type

visitor = FormatterVisitor()

date = CalendarDate.parse(date_string)
formatted = date.accept(visitor)

Methods

	visitFrench(date)

	Visit an instance of FrenchDate type.

	visitGregorian(date)

	Visit an instance of GregorianDate type.

	visitHebrew(date)

	Visit an instance of HebrewDate type.

	visitJulian(date)

	Visit an instance of JulianDate type.

	
abstract visitGregorian(date)

	Visit an instance of GregorianDate type.

	Parameters

	
	dateGregorianDate
	Date instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from CalendarDate.accept() method.

	
abstract visitJulian(date)

	Visit an instance of JulianDate type.

	Parameters

	
	dateJulianDate
	Date instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from CalendarDate.accept() method.

	
abstract visitHebrew(date)

	Visit an instance of HebrewDate type.

	Parameters

	
	dateHebrewDate
	Date instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from CalendarDate.accept() method.

	
abstract visitFrench(date)

	Visit an instance of FrenchDate type.

	Parameters

	
	dateFrenchDate
	Date instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from CalendarDate.accept() method.

ged4py.date

Module for parsing and representing dates in gedcom format.

Classes

	DateValue(key)

	Representation of the <DATE_VALUE>, can be exact date, range, period, etc.

	DateValueAbout(date)

	Implementation of DateValue interface for ABT date.

	DateValueAfter(date)

	Implementation of DateValue interface for AFT date.

	DateValueBefore(date)

	Implementation of DateValue interface for BEF date.

	DateValueCalculated(date)

	Implementation of DateValue interface for CAL date.

	DateValueEstimated(date)

	Implementation of DateValue interface for EST date.

	DateValueFrom(date)

	Implementation of DateValue interface for FROM date.

	DateValueInterpreted(date, phrase)

	Implementation of DateValue interface for INT date.

	DateValuePeriod(date1, date2)

	Implementation of DateValue interface for FROM .

	DateValuePhrase(phrase)

	Implementation of DateValue interface for phrase-date.

	DateValueRange(date1, date2)

	Implementation of DateValue interface for BET .

	DateValueSimple(date)

	Implementation of DateValue interface for simple single-value DATE.

	DateValueTo(date)

	Implementation of DateValue interface for TO date.

	DateValueTypes(value)

	Namespace for constants defining types of date values.

	DateValueVisitor()

	Interface for implementation of Visitor pattern for DateValue classes.

	
class ged4py.date.DateValueTypes(value)

	Bases: enum.Enum

Namespace for constants defining types of date values.

The constants defined in this namespace are used for the values of the
DateValue.kind attribute. Each separate class implementing DateValue
interface uses distinct value for that attribute, and this value can be
used to deduce actual type of the date DateValue instance.

	
SIMPLE = 'SIMPLE'

	Date value consists of a single CalendarDate, corresponding
implementation class is DateValueSimple.

	
FROM = 'FROM'

	Period of dates starting at specified date, end date is unknown,
corresponding implementation class is DateValueFrom

	
TO = 'TO'

	Period of dates ending at specified date, start date is unknown,
corresponding implementation class is DateValueTo.

	
PERIOD = 'PERIOD'

	Period of dates starting at one date and ending at another,
corresponding implementation class is DateValuePeriod.

	
BEFORE = 'BEFORE'

	Date value for an event known to happen before given date,
corresponding implementation class is DateValueBefore.

	
AFTER = 'AFTER'

	Date value for an event known to happen after given date,
corresponding implementation class is DateValueAfter.

	
RANGE = 'RANGE'

	Date value for an event known to happen between given dates,
corresponding implementation class is DateValueRange.

	
ABOUT = 'ABOUT'

	Date value for an event known to happen at approximate date,
corresponding implementation class is DateValueAbout.

	
CALCULATED = 'CALCULATED'

	Date value for an event calculated from other known information,
corresponding implementation class is DateValueCalculated.

	
ESTIMATED = 'ESTIMATED'

	Date value for an event estimated from other known information,
corresponding implementation class is DateValueEstimated.

	
INTERPRETED = 'INTERPRETED'

	Date value for an event interpreted from a specified phrase,
corresponding implementation class is DateValueInterpreted.

	
PHRASE = 'PHRASE'

	Date value for an event is a phrase, corresponding implementation
class is DateValuePhrase.

	
class ged4py.date.DateValue(key)

	Bases: object

Representation of the <DATE_VALUE>, can be exact date, range,
period, etc.

	Parameters

	
	keyobject
	Object that is used for ordering, usually it is a pair of
CalendarDate instances but can be None.

Notes

DateValue is an abstract base class, for each separate kind of GEDCOM
date there is a separate concrete class. Class method parse is
used to parse a date string and return an instance of corresponding
sub-class of DateValue type.

There are presently 12 concrete classes implementing this interface (e.g.
DateValueSimple, DateValueRange, etc.) Different types
have somewhat different set of attributes, to implement type-specific code
on client side one can use one of these approaches:

	dispatch based on the value of kind attribute, it has one of
the values defined in DateValueTypes namespace, and that
value maps uniquely to a corresponding sub-class of
DateValue;

	dispatch based on the type of the instance using isinstance
method to check the type (e.g.
isinstance(date, DateValueRange));

	double dispatch (visitor pattern) by implementing
DateValueVisitor interface.

	Attributes

	
	kind
	The type of GEDCOM date, one of the DateValueTypes enums (DateValueTypes).

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
classmethod parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue
instance out of it.

	Parameters

	
	datestrstr
	String with GEDCOM date, range, period, etc.

	Returns

	
	date_valueDateValue
	Object representing the date value.

	
abstract property kind

	The type of GEDCOM date, one of the DateValueTypes enums
(DateValueTypes).

	
key()

	Return ordering key for this instance.

If this instance has a range of dates associated with it then this
method returns the range as pair of dates. If this instance has a
single date associated with it then this method returns pair which
includes the date twice. For other dates (PHRASE is the only
instance without date) it returns a a pair of fixed but arbitrary
dates in the future.

	Returns

	
	keytuple [CalendarDate]
	Key used for ordering.

	
abstract accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValueAbout(date)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for ABT date.

	Parameters

	
	dateCalendarDate
	Corresponding date.

	Attributes

	
	date
	Calendar date corresponding to this instance (CalendarDate)

	kind
	For DateValueAbout class this is always DateValueTypes.ABOUT.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValueAbout class this is always
DateValueTypes.ABOUT.

	
property date

	Calendar date corresponding to this instance (CalendarDate)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValueAfter(date)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for AFT date.

	Parameters

	
	dateCalendarDate
	Corresponding date.

	Attributes

	
	date
	Calendar date corresponding to this instance (CalendarDate)

	kind
	For DateValueAfter class this is always DateValueTypes.AFTER.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValueAfter class this is always
DateValueTypes.AFTER.

	
property date

	Calendar date corresponding to this instance (CalendarDate)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValueBefore(date)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for BEF date.

	Parameters

	
	dateCalendarDate
	Corresponding date.

	Attributes

	
	date
	Calendar date corresponding to this instance (CalendarDate)

	kind
	For DateValueBefore class this is always DateValueTypes.BEFORE.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValueBefore class this is always
DateValueTypes.BEFORE.

	
property date

	Calendar date corresponding to this instance (CalendarDate)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValueCalculated(date)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for CAL date.

	Parameters

	
	dateCalendarDate
	Corresponding date.

	Attributes

	
	date
	Calendar date corresponding to this instance (CalendarDate)

	kind
	For DateValueCalculated class this is always DateValueTypes.CALCULATED.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValueCalculated class this is always
DateValueTypes.CALCULATED.

	
property date

	Calendar date corresponding to this instance (CalendarDate)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValueEstimated(date)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for EST date.

	Parameters

	
	dateCalendarDate
	Corresponding date.

	Attributes

	
	date
	Calendar date corresponding to this instance (CalendarDate)

	kind
	For DateValueEstimated class this is always DateValueTypes.ESTIMATED.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValueEstimated class this is always
DateValueTypes.ESTIMATED.

	
property date

	Calendar date corresponding to this instance (CalendarDate)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValueFrom(date)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for FROM date.

	Parameters

	
	dateCalendarDate
	Corresponding date.

	Attributes

	
	date
	Calendar date corresponding to this instance (CalendarDate)

	kind
	For DateValueFrom class this is always DateValueTypes.FROM.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValueFrom class this is always
DateValueTypes.FROM.

	
property date

	Calendar date corresponding to this instance (CalendarDate)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValueInterpreted(date, phrase)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for INT date.

	Parameters

	
	dateCalendarDate
	Corresponding date.

	phrasestr
	Phrase string associated with this date.

	Attributes

	
	date
	Calendar date corresponding to this instance (CalendarDate)

	kind
	For DateValueInterpreted class this is always DateValueTypes.INTERPRETED.

	phrase
	Phrase associated with this date (str)

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValueInterpreted class this is always
DateValueTypes.INTERPRETED.

	
property date

	Calendar date corresponding to this instance (CalendarDate)

	
property phrase

	Phrase associated with this date (str)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValuePeriod(date1, date2)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for FROM … TO date.

	Parameters

	
	date1CalendarDate
	FROM date.

	date2CalendarDate
	TO date.

	Attributes

	
	date1
	First Calendar date corresponding to this instance (CalendarDate)

	date2
	Second Calendar date corresponding to this instance (CalendarDate)

	kind
	For DateValuePeriod class this is always DateValueTypes.PERIOD.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValuePeriod class this is always
DateValueTypes.PERIOD.

	
property date1

	First Calendar date corresponding to this instance (CalendarDate)

	
property date2

	Second Calendar date corresponding to this instance (CalendarDate)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValuePhrase(phrase)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for phrase-date.

	Parameters

	
	phrasestr
	Phrase string associated with this date.

	Attributes

	
	kind
	For DateValuePhrase class this is always DateValueTypes.PHRASE.

	phrase
	Phrase associated with this date (str)

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValuePhrase class this is always
DateValueTypes.PHRASE.

	
property phrase

	Phrase associated with this date (str)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValueRange(date1, date2)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for BET … AND … date.

	Parameters

	
	date1CalendarDate
	First date.

	date2CalendarDate
	Second date.

	Attributes

	
	date1
	First Calendar date corresponding to this instance (CalendarDate)

	date2
	Second Calendar date corresponding to this instance (CalendarDate)

	kind
	For DateValueRange class this is always DateValueTypes.RANGE.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValueRange class this is always
DateValueTypes.RANGE.

	
property date1

	First Calendar date corresponding to this instance (CalendarDate)

	
property date2

	Second Calendar date corresponding to this instance (CalendarDate)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValueSimple(date)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for simple single-value DATE.

	Parameters

	
	dateCalendarDate
	Corresponding date.

	Attributes

	
	date
	Calendar date corresponding to this instance (CalendarDate)

	kind
	For DateValueSimple class this is always DateValueTypes.SIMPLE.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValueSimple class this is always
DateValueTypes.SIMPLE.

	
property date

	Calendar date corresponding to this instance (CalendarDate)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValueTo(date)

	Bases: ged4py.date.DateValue

Implementation of DateValue interface for TO date.

	Parameters

	
	dateCalendarDate
	Corresponding date.

	Attributes

	
	date
	Calendar date corresponding to this instance (CalendarDate)

	kind
	For DateValueTo class this is always DateValueTypes.TO.

Methods

	accept(visitor)

	Implementation of visitor pattern.

	key()

	Return ordering key for this instance.

	parse(datestr)

	Parse string <DATE_VALUE> string and make DateValue instance out of it.

	
property kind

	For DateValueTo class this is always
DateValueTypes.TO.

	
property date

	Calendar date corresponding to this instance (CalendarDate)

	
accept(visitor)

	Implementation of visitor pattern.

Each concrete sub-class will implement this method by dispatching the
call to corresponding visitor method.

	Parameters

	
	visitorDateValueVisitor
	Visitor instance.

	Returns

	
	valueobject
	Value returned from a visitor method.

	
class ged4py.date.DateValueVisitor

	Bases: object

Interface for implementation of Visitor pattern for DateValue
classes.

One can easily extend behavior of the DateValue class hierarchy
without modifying classes themselves. Clients need to implement new
behavior by sub-classing DateValueVisitor and calling
DateValue.accept method, e.g.:

class FormatterVisitor(DateValueVisitor):

 def visitSimple(self, date):
 return "Simple date: " + str(date.date)

 # and so on for each date type

visitor = FormatterVisitor()

date = DateValue.parse(date_string)
formatted = date.accept(visitor)

Methods

	visitAbout(date)

	Visit an instance of DateValueAbout type.

	visitAfter(date)

	Visit an instance of DateValueAfter type.

	visitBefore(date)

	Visit an instance of DateValueBefore type.

	visitCalculated(date)

	Visit an instance of DateValueCalculated type.

	visitEstimated(date)

	Visit an instance of DateValueEstimated type.

	visitFrom(date)

	Visit an instance of DateValueFrom type.

	visitInterpreted(date)

	Visit an instance of DateValueInterpreted type.

	visitPeriod(date)

	Visit an instance of DateValuePeriod type.

	visitPhrase(date)

	Visit an instance of DateValuePhrase type.

	visitRange(date)

	Visit an instance of DateValueRange type.

	visitSimple(date)

	Visit an instance of DateValueSimple type.

	visitTo(date)

	Visit an instance of DateValueTo type.

	
abstract visitSimple(date)

	Visit an instance of DateValueSimple type.

	Parameters

	
	dateDateValueSimple
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

	
abstract visitPeriod(date)

	Visit an instance of DateValuePeriod type.

	Parameters

	
	dateDateValuePeriod
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

	
abstract visitFrom(date)

	Visit an instance of DateValueFrom type.

	Parameters

	
	dateDateValueFrom
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

	
abstract visitTo(date)

	Visit an instance of DateValueTo type.

	Parameters

	
	dateDateValueTo
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

	
abstract visitRange(date)

	Visit an instance of DateValueRange type.

	Parameters

	
	dateDateValueRange
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

	
abstract visitBefore(date)

	Visit an instance of DateValueBefore type.

	Parameters

	
	dateDateValueBefore
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

	
abstract visitAfter(date)

	Visit an instance of DateValueAfter type.

	Parameters

	
	dateDateValueAfter
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

	
abstract visitAbout(date)

	Visit an instance of DateValueAbout type.

	Parameters

	
	dateDateValueAbout
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

	
abstract visitCalculated(date)

	Visit an instance of DateValueCalculated type.

	Parameters

	
	dateDateValueCalculated
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

	
abstract visitEstimated(date)

	Visit an instance of DateValueEstimated type.

	Parameters

	
	dateDateValueEstimated
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

	
abstract visitInterpreted(date)

	Visit an instance of DateValueInterpreted type.

	Parameters

	
	dateDateValueInterpreted
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

	
abstract visitPhrase(date)

	Visit an instance of DateValuePhrase type.

	Parameters

	
	dateDateValuePhrase
	Date value instance.

	Returns

	
	valueobject
	Implementation of this method can return anything, value will be
returned from DateValue.accept() method.

ged4py.detail

Modules

	ged4py.detail.io

	Internal module for I/O related methods.

	ged4py.detail.name

	Internal module for parsing names in gedcom format.

ged4py.detail.io

Internal module for I/O related methods.

Functions

	check_bom(file)

	Determines file codec from from its BOM record.

	guess_lineno(file)

	Guess current line number in a file.

Classes

	BinaryFileCR(raw)

	Binary file with support of CR line terminators.

	
ged4py.detail.io.check_bom(file)

	Determines file codec from from its BOM record.

If file starts with BOM record encoded with UTF-8 or UTF-16(BE/LE)
then corresponding encoding name is returned, otherwise None is returned.
In both cases file current position is set to after-BOM bytes. The file
must be open in binary mode and positioned at offset 0.

	
ged4py.detail.io.guess_lineno(file)

	Guess current line number in a file.

Guessing is done in a very crude way - scanning file from beginning
until current offset and counting newlines. Only meant to be used in
exceptional cases - generating line number for error message.

	
class ged4py.detail.io.BinaryFileCR(raw)

	Bases: _io.BufferedReader

Binary file with support of CR line terminators.

I need a binary file object with readline() method which supports all
possible line terminators (LF, CR-LF, CR). Standard binary files have
readline that only stops at LF (and hence CR-LF). This class adds a
workaround for readline method to understand CR-delimited files.

	Attributes

	
	closed
	

	mode
	

	name
	

	raw
	

Methods

	close

	Flush and close the IO object.

	detach

	Disconnect this buffer from its underlying raw stream and return it.

	fileno

	Returns underlying file descriptor if one exists.

	flush

	Flush write buffers, if applicable.

	isatty

	Return whether this is an ‘interactive’ stream.

	read([size])

	Read and return up to n bytes.

	read1([size])

	Read and return up to n bytes, with at most one read() call to the underlying raw stream.

	readable

	Return whether object was opened for reading.

	readline([limit])

	Read and return a line from the stream.

	readlines([hint])

	Return a list of lines from the stream.

	seek(target[, whence])

	Change stream position.

	seekable

	Return whether object supports random access.

	tell

	Return current stream position.

	truncate([pos])

	Truncate file to size bytes.

	writable(/)

	Return whether object was opened for writing.

	write

	Write the given buffer to the IO stream.

	writelines(lines, /)

	Write a list of lines to stream.

	peek

	

	readinto

	

	readinto1

	

	
CR = b'\r'

	

	
LF = b'\n'

	

	
readline(limit=- 1)

	Read and return a line from the stream.

If size is specified, at most size bytes will be read.

The line terminator is always b’n’ for binary files; for text
files, the newlines argument to open can be used to select the line
terminator(s) recognized.

ged4py.detail.name

Internal module for parsing names in gedcom format.

Functions

	parse_name_altree(record)

	Parse NAME structure assuming ALTREE dialect.

	parse_name_ancestris(record)

	Parse NAME structure assuming ANCESTRIS dialect.

	parse_name_myher(record)

	Parse NAME structure assuming MYHERITAGE dialect.

	split_name(name)

	Extracts pieces of name from full name string.

	
ged4py.detail.name.split_name(name)

	Extracts pieces of name from full name string.

	Parameters

	
	namestr
	Full name string.

	Returns

	
	nametuple
	3-tuple (given1, surname, given2), surname or given will
be empty strings if they are not present in full string.

Notes

Full name can have one of these formats:

<NAME_TEXT> |
/<NAME_TEXT>/ |
<NAME_TEXT> /<NAME_TEXT>/ |
/<NAME_TEXT>/ <NAME_TEXT> |
<NAME_TEXT> /<NAME_TEXT>/ <NAME_TEXT>

<NAME_TEXT> can include almost anything excluding commas, numbers,
special characters (though some test files use numbers for the names).
Text between slashes is considered a surname, outside slashes - given
name.

This method splits full name into pieces at slashes, e.g.:

"First /Last/" -> ("First", "Last", "")
"/Last/ First" -> ("", "Last", "First")
"First /Last/ Jr." -> ("First", "Last", "Jr.")
"First Jr." -> ("First Jr.", "", "")

	
ged4py.detail.name.parse_name_altree(record)

	Parse NAME structure assuming ALTREE dialect.

	Parameters

	
	recordged4py.model.Record
	NAME record.

	Returns

	
	parsed_nametuple
	Tuple with 3 or 4 elements, first three elements of tuple are
the same as returned from split_name method, fourth element
(if present) denotes maiden name.

Notes

In ALTREE dialect maiden name (if present) is saved as SURN sub-record
and is also appended to family name in parens. Given name is saved in
GIVN sub-record. Few examples:

No maiden name:

1 NAME John /Smith/
2 GIVN John

With maiden name:

1 NAME Jane /Smith (Ivanova)/
2 GIVN Jane
2 SURN Ivanova

No maiden name:

1 NAME Mers /Daimler (-Benz)/
2 GIVN Mers

Because family name can also contain parens it’s not enough to parse
family name and guess maiden name from it, we also have to check for
SURN record.

ALTREE also replaces empty names with question mark, we undo that too.

	
ged4py.detail.name.parse_name_myher(record)

	Parse NAME structure assuming MYHERITAGE dialect.

	Parameters

	
	recordged4py.model.Record
	NAME record.

	Returns

	
	parsed_nametuple
	Tuple with 3 or 4 elements, first three elements of tuple are
the same as returned from split_name method, fourth element
(if present) denotes maiden name.

Notes

In MYHERITAGE dialect married name (if present) is saved as _MARNM
sub-record. Maiden name is stored in SURN record. Few examples:

No maiden name:

1 NAME John /Smith/
2 GIVN John
2 SURN Smith

With maiden name:

1 NAME Jane /Ivanova/
2 GIVN Jane
2 SURN Ivanova
2 _MARNM Smith

No maiden name:

1 NAME Mers /Daimler (-Benz)/
2 GIVN Mers
2 SURN Daimler (-Benz)

	
ged4py.detail.name.parse_name_ancestris(record)

	Parse NAME structure assuming ANCESTRIS dialect.

As far as I can tell Ancestris does not have any standard convention for
representing maiden or married names. Best we can do in this situation is
to use NAME record value and ignore any other fields.

	Parameters

	
	recordged4py.model.Record
	NAME record.

	Returns

	
	parsed_nametuple
	Tuple with 3 or 4 elements, first three elements of tuple are
the same as returned from split_name method, fourth element
(if present) denotes maiden name.

ged4py.model

Module containing Python in-memory model for GEDCOM data.

Functions

	make_record(level, xref_id, tag, value, …)

	Create Record instance based on parameters.

Classes

	Date()

	Sub-class of Record representing the DATE record.

	Dialect(value)

	Even though the structure of GEDCOM file is more or less fixed, interpretation of some data may vary depending on which application produced GEDCOM file.

	Individual()

	Sub-class of Record representing the INDI record.

	Name(names, dialect)

	Class representing “summary” of person names.

	NameOrder(value)

	Names/Individuals can be ordered differently, e.g.

	NameRec()

	Sub-class of Record representing the NAME record.

	Pointer(parser)

	Sub-class of Record representing a pointer to a record in a GEDCOM file.

	Record()

	Class representing a parsed GEDCOM record in a generic format.

	
ged4py.model.make_record(level, xref_id, tag, value, sub_records, offset, dialect, parser=None) → ged4py.model.Record

	Create Record instance based on parameters.

	Parameters

	
	levelint
	Record level number.

	xref_idstr
	Record reference ID, possibly empty.

	tagstr
	Tag name.

	valuestr
	Record value, possibly empty. Value can be None, bytes, or string
object, if it is bytes then it should be decoded into strings before
calling freeze(), this is normally done by the parser which knows
about encodings.

	sub_recordslist [Record]
	Initial list of subordinate records, possibly empty. List can be
updated later.

	offsetint
	Record location in a file.

	dialectDialect
	One of Dialect enums.

	parserGedcomReader
	Parser instance, only needed for pointer records.

	Returns

	
	recordRecord
	Instance of Record (or one of its subclasses).

Notes

This is the factory method for record instances, it can create different
types of record based on tag of value:

	if value has a pointer form (@ref_id@) then Pointer
instance is created

	if tag is “INDI” then Individual instance is created

	if tag is “NAME” then NameRec instance is created

	if tag is “DATE” then Date instance is created

	otherwise Record instance is created

Returned record is not complete, it could be updated by parser. When
parser finishes updates it calls Record.freeze() method to finalize
record construction.

	
class ged4py.model.Record

	Bases: object

Class representing a parsed GEDCOM record in a generic format.

This is the main element of the data model, it represents records in
GEDCOM files. Each GEDCOM records consists of small number of items:

	level number, integer;

	optional reference ID, string in format @identifier@;

	tag name, short string;

	optional record value, arbitrary string, for pointer records
the record value is the reference ID of some other record.

For many record types GEDCOM specifies subordinate (nested) records with
incremental level number.

Record class defines an interface that makes it easier to navigate this
complex hierarchy of subordinate and referenced records:

	sub_records attribute contains the list of all immediate subordinate
records of this record.

	sub_tag method find subordinate record given its tag, it can
do it recursively if tag name contains multiple levels separated by
slashes, and it can navigate through the pointer records transparently
if follow argument is True.

	sub_tag_value is a convenience method that finds a
subordinate record (via sub_tag call) but returns
value of the record instead of record itself. This simplifies handling
of missing tags.

	sub_tags returns the list of immediate subordinate records
(no recursion). It is useful when multiple sub-records with the same tag
can exist.

There are few sub-classes of the Record class providing additional
methods or facilities for specific tag types.

In general it is impossible to define what constitutes value or identity
of GEDCOM record, so comparison of the records does not make sense.
Similarly hashing operation cannot be used on Record instances, and the
class is explicitly marked as non-hashable.

Client code usually does not need to create instances of this class
directly, make_record() should be used instead. If you create
an instance of this class (or its subclass) then you are responsible for
filling its attributes.

	Attributes

	
	levelint
	Record level number

	xref_idstr
	Record reference ID, possibly empty.

	tagstr
	Tag name

	valueobject
	Record value, possibly None, for many record types value is a
string or None, some subclasses can define different type of
record value.

	sub_recordslist [Record]
	List of subordinate records, possibly empty.

	offsetint
	Record location in a file.

	dialect: `Dialect`
	GEDCOM source dialect, one of the Dialect enums.

Methods

	freeze()

	Method called by parser when updates to this record finish.

	sub_tag(path[, follow])

	Finds and returns sub-record with given tag name.

	sub_tag_value(path[, follow])

	Returns value of a direct sub-record.

	sub_tags(*tags[, follow])

	Returns a list of sub-records matching any tag name.

	
freeze() → ged4py.model.Record

	Method called by parser when updates to this record finish.

Some sub-classes will override this method to implement conversion
of record data to different representation.

	Returns

	
	selfRecord
	Finalized record instance.

	
sub_tag(path, follow=True) → Optional[ged4py.model.Record]

	Finds and returns sub-record with given tag name.

Path can be a simple tag name, in which case the first direct
sub-record of this record with the matching tag is returned. Path
can also consist of several tags separated by slashes, in that case
sub-records are searched recursively.

If follow is True then pointer records are resolved and pointed
record is used instead of pointer record, this also works for all
intermediate records in a path.

	Parameters

	
	pathstr
	One or more tag names separated by slashes.

	followbool
	If True then resolve pointers.

	Returns

	
	recordRecord
	Subordinate record or None if sub-record with a given tag does
not exist.

	
sub_tag_value(path, follow=True) → Any

	Returns value of a direct sub-record.

Works as sub_tag() but returns value of a sub-record instead of
sub-record itself.

	Parameters

	
	pathstr
	One or more tag names separated by slashes.

	followbool
	If True then resolve pointers.

	Returns

	
	valueobject
	Subordinate record value or None if sub-record with a given tag
does not exist.

	
sub_tags(*tags: str, follow: bool = True) → List[ged4py.model.Record]

	Returns a list of sub-records matching any tag name.

If no positional arguments are provided then all direct sub-records of
this record are returned, pointers are resolved if follow is True.
If one or more positional arguments are given then this method returns
all sub-records, direct or nested, that match any of the given tags.

If follow is True then pointer records are resolved and pointed
record is used instead of pointer record, this also works for all
intermediate records in a path.

	Parameters

	
	*tagsstr
	Each positional argument is one or more tag names separated by
slashes.

	followbool, optional
	If True then resolve pointers.

	Returns

	
	recordslist [Record]
	List of records, possibly empty.

	
class ged4py.model.Pointer(parser)

	Bases: ged4py.model.Record

Sub-class of Record representing a pointer to a record in
a GEDCOM file.

This class wraps a GEDCOM pointer value and adds a ref property which
retrieves pointed object. Instance of this class will be used in place of
the GEDCOM pointers in the objects created by parser.

	Parameters

	
	parserged4py.parser.GedcomReader
	Instance of parser class.

	Attributes

	
	valuestr
	Value of the GEDCOM pointer (e.g. “@I1234@”)

	refRecord
	Referenced GEDCOM record.

Methods

	freeze()

	Method called by parser when updates to this record finish.

	sub_tag(path[, follow])

	Finds and returns sub-record with given tag name.

	sub_tag_value(path[, follow])

	Returns value of a direct sub-record.

	sub_tags(*tags[, follow])

	Returns a list of sub-records matching any tag name.

	
property ref

	

	
class ged4py.model.NameRec

	Bases: ged4py.model.Record

Sub-class of Record representing the NAME record.

This class adds an additional method for determining type of the name.
It also redefines the type of the value attribute, it’s type is tuple.
Value tuple can contain 3 or 4 elements, if there are 4 elements then
last element is a maiden name. Second element of a tuple is surname,
first and third elements are pieces of the given name (this is determined
entirely by how name is represented in GEDCOM file). Any of the elements
can be empty string. If NAME record value is empty in GEDCOM file then
all three fields of the tuple will be empty strings. Few examples:

("John", "Smith", "")
("Mary Joan", "Smith", "", "Ivanova") # maiden name
("", "Ivanov", "Ivan Ivanovich")
("John", "Smith", "Jr.")
("", "", "") # empty NAME record

Client code usually does not need to create instances of this class
directly, make_record() should be used instead.

	Attributes

	
	type
	Name type as defined in TYPE record.

Methods

	freeze()

	Method called by parser when updates to this record finish.

	sub_tag(path[, follow])

	Finds and returns sub-record with given tag name.

	sub_tag_value(path[, follow])

	Returns value of a direct sub-record.

	sub_tags(*tags[, follow])

	Returns a list of sub-records matching any tag name.

	
freeze()

	Method called by parser when updates to this record finish.

	Returns

	
	selfNameRec
	Finalized record instance.

	
property type

	Name type as defined in TYPE record. None if TYPE record is
missing, otherwise string, e.g. “aka”, “birth”, “immigrant”,
“maiden”, “married” (or anything else).

	
class ged4py.model.Name(names, dialect)

	Bases: object

Class representing “summary” of person names.

	Parameters

	
	nameslist [NameRec]
	List of NAME records (NameRec instances).

	dialectDialect
	One of Dialect enums.

Notes

Person in GEDCOM can have multiple NAME records, e.g. “aka” name,
“maiden” name, etc. This class provides simple interface for selecting
“best” name from all existing names. The algorithm for choosing best
options is:

	If there are no NAME records then it makes an empty name (with all empty
components)

	If there is only one NAME record then it is used for person name.

	If there are multiple NAME records then the first record without TYPE
sub-record is used, or if all records have TYPE sub-records then first
NAME record is used.

	Attributes

	
	first
	First name is the first part of a given name (drops middle name)

	given
	Given name could include both first and middle name (str)

	maiden
	Maiden last name, can be None (str)

	surname
	Person surname (str)

Methods

	format()

	Format name for output.

	order(order)

	Return name order key.

	
property surname

	Person surname (str)

	
property given

	Given name could include both first and middle name (str)

	
property first

	First name is the first part of a given name (drops middle name)

	
property maiden

	Maiden last name, can be None (str)

	
order(order)

	Return name order key.

Returns tuple with two strings that can be compared to other such
tuple obtained from different name. Note that if you want
locale-dependent ordering then you need to compare strings using
locale-aware method (e.g. locale.strxfrm).

	Parameters

	
	orderNameOrder
	One of the NameOrder enums.

	Returns

	
	ordertuple [str]
	Tuple of two strings.

	
format()

	Format name for output.

There is no single correct way to represent name, values returned from
this method are only useful in limited context, e.g. for logging.

	Returns

	
	namestr
	Formatted name representation.

	
class ged4py.model.Date

	Bases: ged4py.model.Record

Sub-class of Record representing the DATE record.

After freeze() method is called by parser the value attribute contains
instance of ged4py.date.DateValue class.

Methods

	freeze()

	Method called by parser when updates to this record finish.

	sub_tag(path[, follow])

	Finds and returns sub-record with given tag name.

	sub_tag_value(path[, follow])

	Returns value of a direct sub-record.

	sub_tags(*tags[, follow])

	Returns a list of sub-records matching any tag name.

	
freeze()

	Method called by parser when updates to this record finish.

	Returns

	
	selfDate
	Finalized record instance.

	
class ged4py.model.Individual

	Bases: ged4py.model.Record

Sub-class of Record representing the INDI record.

INDI record represents a single person in GEDCOM. This class defines
few methods that are useful shortcuts for accessing person information,
such as navigation to parent records, name, etc.

Client code usually does not need to create instances of this class
directly, make_record() should be used instead.

	Attributes

	
	father
	Parent of this individual (Individual or None)

	mother
	Parent of this individual (Individual or None)

	name
	Person name (Name).

	sex
	Person sex, one of “M”, “F”, or “U” for unknown (str).

Methods

	freeze()

	Method called by parser when updates to this record finish.

	sub_tag(path[, follow])

	Finds and returns sub-record with given tag name.

	sub_tag_value(path[, follow])

	Returns value of a direct sub-record.

	sub_tags(*tags[, follow])

	Returns a list of sub-records matching any tag name.

	
property name

	Person name (Name).

	
property sex

	Person sex, one of “M”, “F”, or “U” for unknown (str).

	
property mother

	Parent of this individual (Individual or None)

	
property father

	Parent of this individual (Individual or None)

ged4py.parser

Module containing methods for parsing GEDCOM files.

Functions

	guess_codec(file[, errors, require_char, warn])

	Look at file contents and guess its correct encoding.

Classes

	GedcomLine(level, xref_id, tag, value, offset)

	Class representing single line in a GEDCOM file.

	GedcomReader(file[, encoding, errors, …])

	Main interface for reading GEDCOM files.

Exceptions

	CodecError

	Class for exceptions raised for codec-related errors.

	IntegrityError

	Class for exceptions raised for structural errors, e.g.

	ParserError

	Class for exceptions raised for parsing errors.

	
class ged4py.parser.GedcomReader(file, encoding=None, errors='strict', require_char=False)

	Bases: object

Main interface for reading GEDCOM files.

	Parameters

	
	file
	File name or file object open in binary mode, file must be seekable.

	encodingstr, optional
	If None (default) then file is analyzed using guess_codec()
method to determine correct codec. Otherwise file is open using
specified codec.

	errorsstr, optional
	Controls error handling behavior during string decoding, accepts same
values as standard codecs.decode method.

	require_charbool, optional
	If True then exception is thrown if CHAR record is not found in a
header, if False and CHAR is not in the header then codec determined
from BOM or “gedcom” is used.

Notes

Instance of this class is used to read and parse single GEDCOM file.
Records in GEDCOM file are transformed into instances of types defined in
ged4py.model module, either ged4py.model.Record class or one of its
sub-classes. Main method of access to the data in the file is by iterating
over level-0 records, optionally restricted by the tag name. The method
which does this is GedcomReader.records0(). Most commonly the code which
reads GEDCOM file at the top-level loop will look like this:

with GedcomReader(path) as parser:
 # iterate over each INDI record in a file
 for record in parser.records0("INDI"):
 # do something with the record or navigate to other linked records

	Attributes

	
	dialect
	File dialect as one of ged4py.model.Dialect enums.

	header
	Header record (ged4py.model.Record).

	index0
	List of level=0 record positions and tag names (list[(int, str)]).

	xref0
	Dictionary which maps xref_id to level=0 record position and tag name (dict[str, (int, str)]).

Methods

	GedcomLines(offset)

	Generator method for gedcom lines.

	read_record(offset)

	Read next complete record from a file starting at given position.

	records0([tag])

	Iterator over level=0 records with given tag.

	
property index0

	List of level=0 record positions and tag names (list[(int, str)]).

	
property xref0

	Dictionary which maps xref_id to level=0 record position and
tag name (dict[str, (int, str)]).

	
property header

	Header record (ged4py.model.Record).

	
property dialect

	File dialect as one of ged4py.model.Dialect enums.

	
GedcomLines(offset)

	Generator method for gedcom lines.

	Parameters

	
	offsetint
	Position in the file to start reading.

	Yields

	
	lineGedcomLine
	An object representing one line of GEDCOM file.

	Raises

	
	ParserError
	Raised if lines have incorrect syntax.

Notes

GEDCOM line grammar is defined in Chapter 1 of GEDCOM standard, it
consists of the level number, optional reference ID, tag name, and
optional value separated by spaces. Chaper 1 is pure grammar level,
it does not assign any semantics to tags or levels. Consequently
this method does not perform any operations on the lines other than
returning the lines in their order in file.

This method iterates over all lines in input file and converts each
line into GedcomLine class. It is an implementation detail used by
other methods, most clients will not need to use this method.

	
records0(tag=None)

	Iterator over level=0 records with given tag.

This is the main method of this class. Clients access data in GEDCOM
files by iterating over level=0 records and then navigating to
sub-records using the methods of the Record class.

	Parameters

	
	tagstr, optional
	If tag is None (default) then return all level=0 records,
otherwise return level=0 records with the given tag.

	Yields

	
	recordRecord
	Instances of Record or its subclasses.

	
read_record(offset)

	Read next complete record from a file starting at given position.

Reads the record at given position and all its sub-records. Stops
reading at EOF or next record with the same or higher (smaller) level
number. File position after return from this method is not specified,
re-position file if you want to read other records.

This is mostly for internal use, regular clients don’t need to use it.

	Parameters

	
	offsetint
	Position in the file to start reading.

	Returns

	
	recordRecord or None
	model.Record instance or None if offset points past EOF.

	Raises

	
	ParserError
	Raised if offsets does not point to the beginning of a record or
for any parsing errors.

	
exception ged4py.parser.ParserError

	Bases: Exception

Class for exceptions raised for parsing errors.

	
exception ged4py.parser.CodecError

	Bases: ged4py.parser.ParserError

Class for exceptions raised for codec-related errors.

	
exception ged4py.parser.IntegrityError

	Bases: Exception

Class for exceptions raised for structural errors, e.g. when record
level nesting is inconsistent.

	
ged4py.parser.guess_codec(file, errors='strict', require_char=False, warn=True)

	Look at file contents and guess its correct encoding.

File must be open in binary mode and positioned at offset 0. If BOM
record is present then it is assumed to be UTF-8 or UTF-16 encoded
file. GEDCOM header is searched for CHAR record and encoding name
is extracted from it, if BOM record is present then CHAR record
must match BOM-defined encoding.

	Parameters

	
	file
	File object, must be open in binary mode.

	errorsstr, optional
	Controls error handling behavior during string decoding, accepts same
values as standard codecs.decode method.

	require_charbool, optional
	If True then exception is thrown if CHAR record is not found in a
header, if False and CHAR is not in the header then codec determined
from BOM or “gedcom” is returned.

	warnbool, optional
	If True (default) then generate error/warning messages for illegal
encodings.

	Returns

	
	codec_namestr
	The name of the codec in this file.

	bom_sizeint
	Size of the BOM record, 0 if no BOM record.

	Raises

	
	CodecError
	Raised if codec name in file is unknown or when codec name in file
contradicts codec determined from BOM.

	UnicodeDecodeError
	Raised if codec fails to decode input lines and errors is set to
“strict” (default).

	
class ged4py.parser.GedcomLine(level: int, xref_id: Optional[str], tag: str, value: bytes, offset: int)

	Bases: tuple

Class representing single line in a GEDCOM file.

Note

Mostly for internal use by parser, most clients do not need to know
about this class.

	Attributes

	
	levelint
	Alias for field number 0

	xref_idstr, possibly empty or None
	Alias for field number 1

	tagstr, required, non-empty
	Alias for field number 2

	valuebytes, possibly empty or None
	Alias for field number 3

	offsetint
	Alias for field number 4

Methods

	count(value, /)

	Return number of occurrences of value.

	index(value[, start, stop])

	Return first index of value.

	
property level

	Record level number (int)

	
property xref_id

	Reference for this record (str or None)

	
property tag

	Tag name (str)

	
property value

	Record value (bytes)

	
property offset

	Record offset in a file (int)

Technical information

Character encoding

GEDCOM originally provided very little support for non-Latin alphabets.
To support Latin-based characters beyond ASCII set GEDCOM used ANSEL [https://en.wikipedia.org/wiki/ANSEL]
8-bit encoding which added a bunch of diacritical marks (modifiers) and
few commonly used non-ASCI characters. Support for non-Latin characters
was added in latter version of GEDCOM standard, version 5.3 added wording
for UNICODE support (mostly broken) and draft 5.5.1 improved situation by
declaring UTF-8 encoding as supported UNICODE encoding. Several systems
producing GEDCOM output today seem to have converged on UTF-8.

The encoding of GEDCOM file is determined by the content of the file
itself, in particular by the CHAR record in the header (which is a
required record), e.g.:

0 HEAD
 1 SOUR PAF
 2 VERS 2.1
 1 DEST ANSTFILE
 1 CHAR ANSEL

GEDCOM standard seems to imply that character set specified in CHAR
record applies to everything after that record and until TRLR record
(last record in file). My interpretation of that statement is that
all header records before and including CHAR should be encoded with
default ANSEL encoding. This may be a source of incompatibilities, I can
imagine that software encoding its output in e.g. UTF-8 can decide to
encode all header records in the the same UTF-8 which can cause errors if
decoded using ANSEL.

Additional source of concerns is the BOM [https://en.wikipedia.org/wiki/Byte_order_mark] record that some applications
(or many on Windows) tend to add to files encoded with UTF-8 (or UTF-16).
Presence of BOM usually implies that the whole content of the file should
be decoded using UTF-8/-16. This contradicts assumption that initial part
of GEDCOM header is encoded in ANSEL.

Ged4py tries to make a best guess as to how it should decode input data,
and it uses simple algorithm to determine that:

	if file starts with BOM [https://en.wikipedia.org/wiki/Byte_order_mark] record then ged4py reads the whole file using
UTF-8 or UTF-16 encoding, if the CHAR record specifies something
other than UTF-8/-16 the exception is raised;

	otherwise if file starts with regular “0” and ” ” ASCII characters the
header is read using ANSEL encoding until CHAR record is met, after
that reading switches to the encoding specified in that record;

	decoding errors are handled according to the mode specified when opening
GEDCOM file, it can be one of standard error handling schemes defined in
codecs module. This scheme applies to to both header (before CHAR
record) and regular content.

See also Tamura Jones’ excellent article [https://www.tamurajones.net/GEDCOMCharacterEncodings.xhtml] summarizing many varieties of
illegal encodings that may be present in GEDCOM files.

Name representation

GEDCOM NAME record defines a structured format for representing names but
applications are not required to fill that structural information and can
instead present name as a value part or NAME record in a “custom of
culture” representation. Only requirement for that representation is that
surname should be delimited by slash characters, e.g.:

0 @I1@ INDI
 1 NAME John /Smith/ -- given name and surname
0 @I2@ INDI
 1 NAME Joanne -- without surname
0 @I3@ INDI
 1 NAME /Иванов/ Иван Ив. -- surname and given name
0 @I4@ INDI
 1 NAME Sir John /Ivanoff/ Jr. -- with prefix/suffix

Potentially individual can have more than one NAME record which can be
distinguished by TYPE record which can be arbitrary string, GEDCOM does not
define standard or allowed types. Types could be use for example to specify
maiden name or names in previous marriages, e.g.:

0 @I1@ INDI
 1 NAME Жанна /Иванова/
 1 NAME Jeanne /d'Arc/
 2 TYPE maiden

Couple of application that I know of do not use TYPE records for maiden name
representation instead they chose different ways to encode names. Here is how
individual applications encode names.

Agelong Tree (Genery)

Agelong Tree [https://genery.com] produces single NAME record per individual, I don’t think it
is possible to make it to create more than one NAME record. Given name and
and surname are encoded as value in the NAME record, and given name also
appears in GIVN sub-record:

1 NAME Given Name /Surname/
 2 GIVN Given Name

If person has a maiden name then it is encoded as additional surname enclosed
in parentheses, also SURN sub-record specifies maiden name:

1 NAME Given Name /Surname (Maiden)/
 2 GIVN Given Name
 2 SURN Maiden

Additionally Agelong tends to represent missing parts of names in GEDCOM file
with question mark (?).

Agelong can also store name suffix and prefix, they are not included into NAME
record value but stored as NPFX and NSFX sub-records:

1 NAME Given Name /Surname/
 2 NPFX Dr.
 2 GIVN Given Name
 2 NSFX Jr.

MyHeritage

MyHeritage [https://www.myheritage.com] Family Tree Builder can generate more than one NAME record but
I could not find a way to specify TYPE of the created NAME records, likely
all NAME records are created without TYPE which is not too useful.

Given name and and surname are encoded as value in the NAME record and they
also appear in GIVN and SURN sub-records:

1 NAME Given Name /Surname/
 2 GIVN Given Name
 2 SURN Surname

If name of the person after marriage is different from birth/maiden name
(apparently in MyHeritage this can only happen for female individuals) then
married name is stored in a non-standard sub-record with _MARNM tag:

1 NAME Given Name /Maiden/
 2 GIVN Given Name
 2 SURN Maiden
 2 _MARNM Married

MyHeritage can also store name suffix and prefix, and also nickname in
corresponding sub-records, they are not rendered in NAME record value:

1 NAME Given Name /Surname/
 2 NPFX Dr.
 2 GIVN Given Name
 2 SURN Surname
 2 NSFX Jr.
 2 NICK Professore

MyHeritage can also store few name pieces in NAME sub-records using
non-standard tags such as _AKA, _RNAME (for religious name),
_FORMERNAME, etc.

ged4py behavior

ged4py tries to determine individual name pieces from all info in GEDCOM
records. Because interpretation of the information depends on the application
which produced GEDCOM file ged4py also has to determine the application name.
Application name (a.k.a. GEDCOM “dialect”) is determined from file header and
is stored in a dialect property of GedcomReader
class (one of the DIALECT_* constants defined in ged4py.model
module). In general naming of individuals can be overly complicated, ged4py
tries to build a simpler model of person naming by determining four pieces of
each individual’s name:

	given name, in some cultures it can include middle (or father) name

	first name, ged4py just uses first word (before space) of given name

	last name, for married females who changed their name in marriage ged4py
assumes this to be a married name

	maiden name, only applies to married females who changed their name in
marriage

Here is the algorithm that ged4py uses for extracting these pieces:

	for Agelong dialect:

	only NAME record value is used, sub-records are ignored

	maiden name is determined from parenthesized portion of surname

	last name is everything except maiden name in surname

	given name is value without surname, collects everything before and
after slashes in NAME value

	for MyHeritage dialect:

	if _MARNM sub-record is present then it is used as last name and
everything between slashes in NAME value is used as maiden name

	otherwise everything between slashes is used as last name, maiden name
is empty

	given name is NAME value without slashes and stuff between slashes

	for other cases (“default” dialect):

	if there is NAME record with TYPE sub-record equal ‘maiden’ then use
surname from that record value as maiden name

	if there is more than one NAME record choose one without TYPE sub-record
as “primary” name, or use first NAME record; last name comes from
primary NAME value between slashes, first name is the rest of value.

Examples

This page collects several simple code examples which use ged4py.

Example 1

Trivial example of opening the file, iterating over INDI records (which
produces Individual instances) and printing basic
information for each person. format() method is
used to produce printable representation of a name, though this is only one of
possible ways to format names. Method
sub_tag_value() is used to access the values of
subordinate tags of the record, it can follow many levels of tags.

import sys
from ged4py.parser import GedcomReader

open GEDCOM file
with GedcomReader(sys.argv[1]) as parser:
 # iterate over each INDI record in a file
 for i, indi in enumerate(parser.records0("INDI")):
 # Print a name (one of many possible representations)
 print(f"{i}: {indi.name.format()}")

 father = indi.father
 if father:
 print(f" father: {father.name.format()}")

 mother = indi.mother
 if mother:
 print(f" mother: {mother.name.format()}")

 # Get _value_ of the BIRT/DATE tag
 birth_date = indi.sub_tag_value("BIRT/DATE")
 if birth_date:
 print(f" birth date: {birth_date}")

 # Get _value_ of the BIRT/PLAC tag
 birth_place = indi.sub_tag_value("BIRT/PLAC")
 if birth_place:
 print(f" birth place: {birth_place}")

Example 2

This example iterates over FAM records in the file which represent family
structure. FAM records do not have special record type so they produce generic
Record instances. This example shows the use of
sub_tag() method which can dereference pointer
records contained in FAM records to retrieve corresponding INDI records.

import sys
from ged4py.parser import GedcomReader

with GedcomReader(sys.argv[1]) as parser:
 # iterate over each FAM record in a file
 for i, fam in enumerate(parser.records0("FAM")):

 print(f"{i}:")

 # Get records for spouses, FAM record contains pointers to INDI
 # records but sub_tag knows how to follow the pointers and return
 # the referenced records instead.
 husband, wife = fam.sub_tag("HUSB"), fam.sub_tag("WIFE")
 if husband:
 print(f" husband: {husband.name.format()}")
 if wife:
 print(f" wife: {wife.name.format()}")

 # Get _value_ of the MARR/DATE tag
 marr_date = fam.sub_tag_value("MARR/DATE")
 if marr_date:
 print(f" marriage date: {marr_date}")

 # access all CHIL records, sub_tags method returns list (possibly empty)
 children = fam.sub_tags("CHIL")
 for child in children:
 # print name and date of birth
 print(f" child: {child.name.format()}")
 birth_date = child.sub_tag_value("BIRT/DATE")
 if birth_date:
 print(f" birth date: {birth_date}")

Example 3

This example shows how to specialize date formatting. Date representation in
different calendars is a very complicated topic and ged4py cannot solve it
in any general way. Instead it gives clients an option to specialize date
handling in whatever way clients prefer. This is done by implementing
DateValueVisitor interface and passing a visitor
instance to ged4py.date.DateValue.accept() method. For completeness
one also has to implement CalendarDateVisitor to
format or do anything else to the instances of
CalendarDate, this is not shown in the example.

import sys
from ged4py.parser import GedcomReader
from ged4py.date import DateValueVisitor

class DateFormatter(DateValueVisitor):
 """Visitor class that produces string representation of dates.
 """
 def visitSimple(self, date):
 return f"{date.date}"

 def visitPeriod(self, date):
 return f"from {date.date1} to {date.date2}"

 def visitFrom(self, date):
 return f"from {date.date}"

 def visitTo(self, date):
 return f"to {date.date}"

 def visitRange(self, date):
 return f"between {date.date1} and {date.date2}"

 def visitBefore(self, date):
 return f"before {date.date}"

 def visitAfter(self, date):
 return f"after {date.date}"

 def visitAbout(self, date):
 return f"about {date.date}"

 def visitCalculated(self, date):
 return f"calculated {date.date}"

 def visitEstimated(self, date):
 return f"estimated {date.date}"

 def visitInterpreted(self, date):
 return f"interpreted {date.date} ({date.phrase})"

 def visitPhrase(self, date):
 return f"({date.phrase})"

format_visitor = DateFormatter()

with GedcomReader(sys.argv[1]) as parser:
 # iterate over each INDI record in a file
 for i, indi in enumerate(parser.records0("INDI")):
 print(f"{i}: {indi.name.format()}")

 # get all possible event types and print their dates,
 # full list of events is longer, this is only an example
 events = indi.sub_tags("BIRT", "CHR", "DEAT", "BURI", "ADOP", "EVEN")
 for event in events:
 date = event.sub_tag_value("DATE")
 # Some event types like generic EVEN can define TYPE tag
 event_type = event.sub_tag_value("TYPE")
 # pass a visitor to format the date
 if date:
 date_str = date.accept(format_visitor)
 else:
 date_str = "N/A"
 print(f" event: {event.tag} date: {date_str} type: {event_type}")

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/andy-z/ged4py/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

GEDCOM parser for Python could always use more documentation, whether as part of the
official GEDCOM parser for Python docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/andy-z/ged4py/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up ged4py for local development.

	Fork the ged4py repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/ged4py.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv ged4py
$ cd ged4py/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 ged4py tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.6+. Check
https://travis-ci.org/andy-z/ged4py/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_ged4py

Credits

Development Lead

	Andy Salnikov <ged4py@py-dev.com>

Contributors

	David Haney (@haney [https://github.com/haney])

History

0.4.4 (2021-05-01)

Add Python3.9 to tox, github test, and classifiers.

0.4.3 (2021-04-30)

	Extend behavior of Record.sub_tags() method.

0.4.2 (2021-04-09)

	Fix crash in sub_tag() with broken files

0.4.1 (2021-04-08)

	Improve handling of invalid dates

0.4.0 (2020-10-09)

	Python3 goodies, use enum classes for enums

0.3.2 (2020-10-04)

	Use numpydoc style for docstrings, add extension to Sphinx

	Drop Python2 compatibility code

0.3.1 (2020-09-28)

	Use github actions instead of Travis CI

0.3.0 (2020-09-28)

	Drop Python2 support

	Python3 supported versions are 3.6 - 3.8

0.2.4 (2020-08-30)

	Extend dialect detection for new genery.com SOUR format

0.2.3 (2020-08-29)

	Disable hashing for Record types

	Add hash method for DateValue and CalendarDate classes

	Improve ordering of DateValue instances

0.2.2 (2020-08-16)

	Fix parsing of DATE records with leading blanks

0.2.1 (2020-08-15)

	Extend documentation with examples

	Extend docstrings for few classes

0.2.0 (2020-07-05)

	Improve support for GEDCOM date types

0.1.13 (2020-04-15)

	Add support for MacOS line breaks (single CR character)

0.1.12 (2020-03-01)

	Add support for a bunch of illegal encodings (thanks @Tuisto59 for report).

0.1.11 (2019-01-06)

	Improve support for ANSEL encoded documents that use combining characters.

0.1.10 (2018-10-17)

	Add protection for empty DATE fields.

0.1.9 (2018-05-17)

	Improve exception messages, convert bytes to string

0.1.8 (2018-05-16)

	Add simple integrity checks to parser

0.1.7 (2018-04-23)

	Fix for DateValue comparison, few small improvements

0.1.6 (2018-04-02)

	Improve handling of non-standard dates, any date string that cannot
be parsed according to GEDCOM syntax is assumed to be a “Date phrase”

0.1.5 (2018-03-25)

	Fix for exception due to empty NAME record

0.1.4 (2018-01-31)

	Improve name parsing for ALTREE dialect

0.1.3 (2018-01-16)

	improve Py3 compatibility

0.1.2 (2017-11-26)

	Get rid of name formatting options, too complicated for this package.

	Describe name parsing for different dialects.

0.1.1 (2017-11-20)

	Fix for missing modules.

0.1.0 (2017-07-17)

	First release on PyPI.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 ged4py	

 	
 	
 ged4py.calendar	

 	
 	
 ged4py.date	

 	
 	
 ged4py.detail	

 	
 	
 ged4py.detail.io	

 	
 	
 ged4py.detail.name	

 	
 	
 ged4py.model	

 	
 	
 ged4py.parser	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | X
 | Y

A

 	
 	ABOUT (ged4py.date.DateValueTypes attribute)

 	accept() (ged4py.calendar.CalendarDate method)

 	(ged4py.calendar.FrenchDate method)

 	(ged4py.calendar.GregorianDate method)

 	(ged4py.calendar.HebrewDate method)

 	(ged4py.calendar.JulianDate method)

 	(ged4py.date.DateValue method)

 	(ged4py.date.DateValueAbout method)

 	(ged4py.date.DateValueAfter method)

 	(ged4py.date.DateValueBefore method)

 	(ged4py.date.DateValueCalculated method)

 	(ged4py.date.DateValueEstimated method)

 	(ged4py.date.DateValueFrom method)

 	(ged4py.date.DateValueInterpreted method)

 	(ged4py.date.DateValuePeriod method)

 	(ged4py.date.DateValuePhrase method)

 	(ged4py.date.DateValueRange method)

 	(ged4py.date.DateValueSimple method)

 	(ged4py.date.DateValueTo method)

 	
 	AFTER (ged4py.date.DateValueTypes attribute)

B

 	
 	bc (ged4py.calendar.CalendarDate attribute)

 	
 	BEFORE (ged4py.date.DateValueTypes attribute)

 	BinaryFileCR (class in ged4py.detail.io)

C

 	
 	CALCULATED (ged4py.date.DateValueTypes attribute)

 	calendar() (ged4py.calendar.CalendarDate property)

 	(ged4py.calendar.FrenchDate property)

 	(ged4py.calendar.GregorianDate property)

 	(ged4py.calendar.HebrewDate property)

 	(ged4py.calendar.JulianDate property)

 	
 	CalendarDate (class in ged4py.calendar)

 	CalendarDateVisitor (class in ged4py.calendar)

 	CalendarType (class in ged4py.calendar)

 	check_bom() (in module ged4py.detail.io)

 	CodecError

 	CR (ged4py.detail.io.BinaryFileCR attribute)

D

 	
 	Date (class in ged4py.model)

 	date() (ged4py.date.DateValueAbout property)

 	(ged4py.date.DateValueAfter property)

 	(ged4py.date.DateValueBefore property)

 	(ged4py.date.DateValueCalculated property)

 	(ged4py.date.DateValueEstimated property)

 	(ged4py.date.DateValueFrom property)

 	(ged4py.date.DateValueInterpreted property)

 	(ged4py.date.DateValueSimple property)

 	(ged4py.date.DateValueTo property)

 	date1() (ged4py.date.DateValuePeriod property)

 	(ged4py.date.DateValueRange property)

 	date2() (ged4py.date.DateValuePeriod property)

 	(ged4py.date.DateValueRange property)

 	DateValue (class in ged4py.date)

 	DateValueAbout (class in ged4py.date)

 	
 	DateValueAfter (class in ged4py.date)

 	DateValueBefore (class in ged4py.date)

 	DateValueCalculated (class in ged4py.date)

 	DateValueEstimated (class in ged4py.date)

 	DateValueFrom (class in ged4py.date)

 	DateValueInterpreted (class in ged4py.date)

 	DateValuePeriod (class in ged4py.date)

 	DateValuePhrase (class in ged4py.date)

 	DateValueRange (class in ged4py.date)

 	DateValueSimple (class in ged4py.date)

 	DateValueTo (class in ged4py.date)

 	DateValueTypes (class in ged4py.date)

 	DateValueVisitor (class in ged4py.date)

 	day (ged4py.calendar.CalendarDate attribute)

 	dialect() (ged4py.parser.GedcomReader property)

 	dual_year (ged4py.calendar.GregorianDate attribute)

E

 	
 	ESTIMATED (ged4py.date.DateValueTypes attribute)

F

 	
 	father() (ged4py.model.Individual property)

 	first() (ged4py.model.Name property)

 	format() (ged4py.model.Name method)

 	freeze() (ged4py.model.Date method)

 	(ged4py.model.NameRec method)

 	(ged4py.model.Record method)

 	
 	FRENCH_R (ged4py.calendar.CalendarType attribute)

 	FrenchDate (class in ged4py.calendar)

 	FROM (ged4py.date.DateValueTypes attribute)

G

 	
 	
 ged4py

 	module

 	
 ged4py.calendar

 	module

 	
 ged4py.date

 	module

 	
 ged4py.detail

 	module

 	
 ged4py.detail.io

 	module

 	
 ged4py.detail.name

 	module

 	
 	
 ged4py.model

 	module

 	
 ged4py.parser

 	module

 	GedcomLine (class in ged4py.parser)

 	GedcomLines() (ged4py.parser.GedcomReader method)

 	GedcomReader (class in ged4py.parser)

 	given() (ged4py.model.Name property)

 	GREGORIAN (ged4py.calendar.CalendarType attribute)

 	GregorianDate (class in ged4py.calendar)

 	guess_codec() (in module ged4py.parser)

 	guess_lineno() (in module ged4py.detail.io)

H

 	
 	header() (ged4py.parser.GedcomReader property)

 	
 	HEBREW (ged4py.calendar.CalendarType attribute)

 	HebrewDate (class in ged4py.calendar)

I

 	
 	index0() (ged4py.parser.GedcomReader property)

 	Individual (class in ged4py.model)

 	
 	IntegrityError

 	INTERPRETED (ged4py.date.DateValueTypes attribute)

J

 	
 	JULIAN (ged4py.calendar.CalendarType attribute)

 	
 	JulianDate (class in ged4py.calendar)

K

 	
 	key() (ged4py.calendar.CalendarDate method)

 	(ged4py.calendar.FrenchDate method)

 	(ged4py.calendar.GregorianDate method)

 	(ged4py.calendar.HebrewDate method)

 	(ged4py.calendar.JulianDate method)

 	(ged4py.date.DateValue method)

 	kind() (ged4py.date.DateValue property)

 	(ged4py.date.DateValueAbout property)

 	(ged4py.date.DateValueAfter property)

 	(ged4py.date.DateValueBefore property)

 	(ged4py.date.DateValueCalculated property)

 	(ged4py.date.DateValueEstimated property)

 	(ged4py.date.DateValueFrom property)

 	(ged4py.date.DateValueInterpreted property)

 	(ged4py.date.DateValuePeriod property)

 	(ged4py.date.DateValuePhrase property)

 	(ged4py.date.DateValueRange property)

 	(ged4py.date.DateValueSimple property)

 	(ged4py.date.DateValueTo property)

L

 	
 	level() (ged4py.parser.GedcomLine property)

 	
 	LF (ged4py.detail.io.BinaryFileCR attribute)

M

 	
 	maiden() (ged4py.model.Name property)

 	make_record() (in module ged4py.model)

 	
 module

 	ged4py

 	ged4py.calendar

 	ged4py.date

 	ged4py.detail

 	ged4py.detail.io

 	ged4py.detail.name

 	ged4py.model

 	ged4py.parser

 	
 	month (ged4py.calendar.CalendarDate attribute)

 	month_num (ged4py.calendar.CalendarDate attribute)

 	months() (ged4py.calendar.CalendarDate class method)

 	(ged4py.calendar.FrenchDate class method)

 	(ged4py.calendar.GregorianDate class method)

 	(ged4py.calendar.HebrewDate class method)

 	(ged4py.calendar.JulianDate class method)

 	mother() (ged4py.model.Individual property)

N

 	
 	Name (class in ged4py.model)

 	
 	name() (ged4py.model.Individual property)

 	NameRec (class in ged4py.model)

O

 	
 	offset() (ged4py.parser.GedcomLine property)

 	
 	order() (ged4py.model.Name method)

 	original (ged4py.calendar.CalendarDate attribute)

P

 	
 	parse() (ged4py.calendar.CalendarDate class method)

 	(ged4py.date.DateValue class method)

 	parse_name_altree() (in module ged4py.detail.name)

 	parse_name_ancestris() (in module ged4py.detail.name)

 	parse_name_myher() (in module ged4py.detail.name)

 	
 	ParserError

 	PERIOD (ged4py.date.DateValueTypes attribute)

 	PHRASE (ged4py.date.DateValueTypes attribute)

 	phrase() (ged4py.date.DateValueInterpreted property)

 	(ged4py.date.DateValuePhrase property)

 	Pointer (class in ged4py.model)

R

 	
 	RANGE (ged4py.date.DateValueTypes attribute)

 	read_record() (ged4py.parser.GedcomReader method)

 	readline() (ged4py.detail.io.BinaryFileCR method)

 	
 	Record (class in ged4py.model)

 	records0() (ged4py.parser.GedcomReader method)

 	ref() (ged4py.model.Pointer property)

S

 	
 	sex() (ged4py.model.Individual property)

 	SIMPLE (ged4py.date.DateValueTypes attribute)

 	split_name() (in module ged4py.detail.name)

 	
 	sub_tag() (ged4py.model.Record method)

 	sub_tag_value() (ged4py.model.Record method)

 	sub_tags() (ged4py.model.Record method)

 	surname() (ged4py.model.Name property)

T

 	
 	tag() (ged4py.parser.GedcomLine property)

 	
 	TO (ged4py.date.DateValueTypes attribute)

 	type() (ged4py.model.NameRec property)

V

 	
 	value() (ged4py.parser.GedcomLine property)

 	visitAbout() (ged4py.date.DateValueVisitor method)

 	visitAfter() (ged4py.date.DateValueVisitor method)

 	visitBefore() (ged4py.date.DateValueVisitor method)

 	visitCalculated() (ged4py.date.DateValueVisitor method)

 	visitEstimated() (ged4py.date.DateValueVisitor method)

 	visitFrench() (ged4py.calendar.CalendarDateVisitor method)

 	visitFrom() (ged4py.date.DateValueVisitor method)

 	
 	visitGregorian() (ged4py.calendar.CalendarDateVisitor method)

 	visitHebrew() (ged4py.calendar.CalendarDateVisitor method)

 	visitInterpreted() (ged4py.date.DateValueVisitor method)

 	visitJulian() (ged4py.calendar.CalendarDateVisitor method)

 	visitPeriod() (ged4py.date.DateValueVisitor method)

 	visitPhrase() (ged4py.date.DateValueVisitor method)

 	visitRange() (ged4py.date.DateValueVisitor method)

 	visitSimple() (ged4py.date.DateValueVisitor method)

 	visitTo() (ged4py.date.DateValueVisitor method)

X

 	
 	xref0() (ged4py.parser.GedcomReader property)

 	
 	xref_id() (ged4py.parser.GedcomLine property)

Y

 	
 	year (ged4py.calendar.CalendarDate attribute)

 	
 	year_str() (ged4py.calendar.CalendarDate property)

 	(ged4py.calendar.GregorianDate property)

 nav.xhtml

 Table of Contents

 		
 Welcome to GED4PY’s documentation!

 		
 GEDCOM parser for Python

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 ged4py API

 		
 ged4py

 		
 ged4py.calendar

 		
 ged4py.date

 		
 ged4py.detail

 		
 ged4py.model

 		
 ged4py.parser

 		
 Technical information

 		
 Character encoding

 		
 Name representation

 		
 Agelong Tree (Genery)

 		
 MyHeritage

 		
 ged4py behavior

 		
 Examples

 		
 Example 1

 		
 Example 2

 		
 Example 3

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.4.4 (2021-05-01)

 		
 0.4.3 (2021-04-30)

 		
 0.4.2 (2021-04-09)

 		
 0.4.1 (2021-04-08)

 		
 0.4.0 (2020-10-09)

 		
 0.3.2 (2020-10-04)

 		
 0.3.1 (2020-09-28)

 		
 0.3.0 (2020-09-28)

 		
 0.2.4 (2020-08-30)

 		
 0.2.3 (2020-08-29)

 		
 0.2.2 (2020-08-16)

 		
 0.2.1 (2020-08-15)

 		
 0.2.0 (2020-07-05)

 		
 0.1.13 (2020-04-15)

 		
 0.1.12 (2020-03-01)

 		
 0.1.11 (2019-01-06)

 		
 0.1.10 (2018-10-17)

 		
 0.1.9 (2018-05-17)

 		
 0.1.8 (2018-05-16)

 		
 0.1.7 (2018-04-23)

 		
 0.1.6 (2018-04-02)

 		
 0.1.5 (2018-03-25)

 		
 0.1.4 (2018-01-31)

 		
 0.1.3 (2018-01-16)

 		
 0.1.2 (2017-11-26)

 		
 0.1.1 (2017-11-20)

 		
 0.1.0 (2017-07-17)

_static/plus.png

_static/file.png

_static/minus.png

